Elastic Multi Body Simulation of a Multi-Cylinder Engine
نویسندگان
چکیده
This paper analyzes the vibration behavior of an in-line 4-cylinder, 4-strokes, internal combustion turbocharged direct injection gasoline engine. A detailed multi-body numerical model of the engine prototype was used to characterize the whole engine dynamic behavior, in terms of forces and velocities. The crank train multi-body model was created starting from engine geometrical data, and the available combustion loads were employed for the Multi-Body Dynamic Simulation (MBDS). A combined usage of FEM and multi body methodologies were adopted for the dynamic analysis: both crankshaft and cylinder block were considered as flexible bodies, whereas all the other components were considered as rigid. The engine mounts were considered as flexible elements with given stiffness and damping. The hydrodynamic bearings were also modelling. The software LMS Virtual Lab (modules PDS and Motion) and ANSYS were used for the simulation.
منابع مشابه
Development of balance shaft and flywheel for single cylinder diesel engine based on analytical approach and comparison with the simulation result
Vibration is a key factor of abrasion and destruction in the internal combustion engine. In internal combustion engines, the main causes of vibration is combustion pressure, connecting rod weight, piston weight and inertial forces. This vibration create corrosion and fracture in main part of engine such as crankshaft, camshaft and cylinder block in long time. This corrosion and fracture is effe...
متن کاملExperimental and Numerical Flow Investigation of Intake Manifold and Multi Criteria Decision Making on 3-cylinder SI Engine using Technique for Order of Preference by Similarity to Ideal Solution (RESEARCH NOTE)
In this paper, technique for order of preference by similarity to ideal solution(TOPSIS) method is used to find the best compromising design of intake manifold for a 3-cylinder engine considering mean value of torque, torque at 3500 rpm, mean value of brake mean specific consumption (BSFC) and BSFC at 3500 rpmas four objective functions. To calculate the objective functions, engine simulation i...
متن کاملExact Solution for Electro- Thermo- Mechanical Behavior of Composite Cylinder Reinforced by BNNTs under Non- Axisymmetric Thermo- Mechanical Loads
In this research, static stresses analysis of boron nitride nano - tube reinforced composite (BNNTRC) cylinder made of poly - vinylidene fluoride (PVDF) subjected to non - axisymmetric thermo - mechanical loads and applied voltage is developed. The surrounded elastic medium is modelled by Pasternak foundation. Composite structure is modeled based on piezoelectric fiber reinforced composite (PFR...
متن کاملLow Cycle Fatigue Simulation of Valve Bridge Region in Cylinder Head Based on Critical Plane Model
The reason of this study is low cycle failure of cast iron cylinder head during the E5 standard durability test. The goal of the present investigation is durability test simulation and low cycle fatigue life evaluation of cast iron cylinder head. With uncouple structural analysis, preloads, thermal and mechanical load and boundary conditions are prescribed to finite element model of the cylinde...
متن کاملMulti-Dimensional Simulation of n-Heptane Combustion under HCCI Engine Condition Using Detailed Chemical Kinetics
In this study, an in-house multi-dimensional code has been developed which simulates the combustion of n-heptane in a Homogeneous Charge Compression Ignition (HCCI) engine. It couples the flow field computations with detailed chemical kinetic scheme which involves the multi-reactions equations. A chemical kinetic scheme solver has been developed and coupled for solving the chemical reactions an...
متن کامل